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ABSTRACT 

Using a lower tolerance bound as the derated life provides a 

guaranteed service period with the confidence level as a measure of 

safety in situations where mass production is contemplated. However, 

when only a limited number of items are to be produced, the 

probability of no failures among the fleet of specified size provides 

a better measure of assurance. Assuming that the life distribution is 

one of a specified set of subclasses of those distributions which have 

increasing failure rates we find those derating functions which can be 

used to provide lower tolerance bounds of given confidence or a safe 

service life with specified fleet assurance. 

A method of finding such derating functions is exhibited and the 

calculation of a lower bound for the probability of no failure in the 

fleet is carried out when such derating functions are used.  The 

confidence in the tolerance bound and the assurance of no fleet failure 

are compared when using bounds obtained from these derating functions. 

I——jgp—|jy_:~-t,i /JIHP1 „"^lU" ""^| 
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1.  INTRODUCTION 

Suppose we have a structural component in an airplane which is 

subject to failure from fatigue, perhaps due to the cyclic loading of 

the ground-air-ground cycle, to acoustic loading or to some other well- 

defined and reconstructible phenomenon.  We ask what estimate can we 

make of a safe service period, or more specifically, the lower quantiles 

of the distribution of the time until failure, from the testing of a 

small number of specimens under simulated conditions within the laboratory. 

The first question with which we concern ourselves is, what is the 

probability that the weakest component within a fleet of airplanes will 

fail before the time established by derating the life estimated from the 

simulated testing.  The problem is to determine the derating procedure, by 

which we mean a derating function depending upon the test sample, so that 

there is little probability of failure within the fleet. 

We let X.   be the i   ordered observation of m Independent 
i,m 

observations resulting from the simulated testing within the laboratory 

and we let Y.   be the i   ordered observation of the n components 

in service within the fleet. We assume that the lives simulated in the 

laboratory have the same distribution is the actual service lives. This 

means that the ordered observations obtained are from independent and 

identically distributed random variables with the same distribution, which 

we call F. 

From the laboratory testing we have the data X ■ (X-  ,...,X  ) which, ** l,m     m,m 

together with a specified derating function d, we can use to obtain the 

derated (or guaranteed) life d(X).  The probability that no more than k-1 

■i 

• 
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out of n failures occur In the fleet before the derated life, 

k > l,...,n, we call the fleet assurance, labeled a(k)  and It Is 

given by 

Since 

a(k) - n\^ >  d(X)]. 

k-1 

k(,"l /" (l-e-2)k-1e-(n-k+1)zdz 0 /.: !(y) 
where Q » -Än(l-F), 

we have, letting G be the joint distribution of the sample £ 

«(k) - k(») (   r     (l-e-s)k-1e-(,,-k+1)ld. iOM. 

For the applications that we consider here, we shall only be 

interested in the case k-1.  So that we omit k and write 

(1.1) a . / e-^^dGCx). 
x 

The event, no failure In the entire fleet before the derated life. Is 

the only event which seems to provide assurance in the ordinary sense 

to customers. 

m 
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A usual method of quality assessment, applicable to the diameter 

of machined parts, etc., is that of a toteranae bound.    We include this 

for purposes of comparison even though it is not of primary interest 

to us. 

The probability that a proportion of at least ß of all future 

observations will not fail before the derated life we call the aonfidenae, 

in order to be distinguished from the other measure of safety. We write 

this as 

(1.2) Y = P[l-F(dX) > 3]. 

where we here establish the convention that juxtaposition of functions 

indicates composition. 

In this interpretation the derated life is a lower tolerance bound 

for the population described by the distribution F,  and the confidence 

level Y of the lower tolerance bound dQ()  in our designation does 

not depend upon the fleet size. 

In order to introduce the fleet size, one might ask that the proportion 

of all future fleets of size n which have their first failure occurring 

after the derated life d(X)  be at least ß. But this we see becomes 

merely 

P[[l-F(d2()]n > ßj 

which is (1.2) with ß replaced by ß  . 

Our problem is to choose the function d so that we can be sure the 

measures of safety which we have chosen, namely a and Y» 
are sufficiently 

near one, keeping in mind the economic desirability of using as few of the 

first ordered observations as possible. 
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2.  THE MINIMUM OBSERVATION 

For a nonnegative random variable X with density f and 

distribution F, the hazard rate  (failure rate) q is defined by 

Hence 

q(t) - 3^(0  for ^ < 1- 

t 

Q(t) - / q(x)dx - -£n[l-F(t)] 
0 

is called the cumulative hazard,  or more simply, the hazai-d. 

Some nonparametric classes which have been studied previously are 

hazard rate increasing: labeled 

IHR - {q: q(t)  is increasing on 0 < t < »} 

and hazard rate increasing on the average: labeled 

IHRA ■ {q: *~~*'   is increasing on 0 < t < »}, 

where we use increasing in the weak sense i.e. qCO f, q(t9) for t. < t 

In this connection, see [2], [3], and the bibliography given there. 

These two classes are thought to represent the appropriate classes of 

life lengths for which wearout should be considered. 
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It has been pointed out, see [6], that the log-normal distribution has 

a hazard rate which does not Increase for all t > 0. As a matter of fact, 

a simple calculation shows that it is not in the IHRA class either.  In 

many people's opinion this is sufficient reason to discredit it as a 

representation for life length. However, it is still used in fatigue studies [7]. 

Another distribution which has recently received much attention 

and has been applied to fatigue problems is the Welbull distribution: 

this has a hazard of the form 

t-a K+1 

(2.1) Q(t) « (b^ä/     t > a 

■ 

= 0 t < a 

where a is the certain life (time before which no failure can occur) 

and b is a measure of the central tendency, and < is the shape 

parameter. See [6], [7]. 

It has been said that the range of K which is applicable to 

fatigue lives is 2 < K < 5 (see [5]). 
. i 

To indicate the direction in which our investigation will proceed, 

we set out for later comparison the special case in which the derating 
j : 

function is proportional to the minimum observation, 

(2.2) d(X) - p X.     0 < p < 1. 
~   r l,m      r 

Hence from (1.1) we have 
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00 

(2.3.1) a - PEY. n > pX, J - m / exp{-nQ(px)-mQ(x)}q(x)dx 

and from (1.2) 

I "Q(pXl m)   1 
(2.3.2) Y - p|e    

i»m > 81. 

Notice that If we make the IHRA assumption, namely, 

Y ^ Is Increasing, then Q(pt) <_ pQ(t) and we obtain an Immediate lower 

bound for y However, we can obtain another bound by strengthening our assumption. 

If •**■-*■ is Increasing, then q(pt) <. pq(t) and by Integrating we obtain 

Q(pt) lp2Q(t). 

While If q^O) - 0 and, say, 

^    Is convex Increasing, then q(pt) ^. p q(t) from which follows 

Q(pt) lp3Q(t). 

2 
(Note that we use only the fact that q(t)/t  Is Increasing.) 

Let us Introduce the notation: for K ^ 0 

q e S(C Iff ~~  Is Increasing for  0 < x < • 
x 

q e C  Iff ^^ Is convex Increasing and 11m ^^ ■ 0. 
x xiO    x 

Then we have almost Immediately 

THEOREM 1.   If q e C _2 or q e S ,  for some < >_2t    then using 

the derating function of (2.2) we have 

1 
a > 

, . n K 
1 + m P m 

Y > 1 - 6(m/pK) 
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and there exist failure rates in C „ U S  .  for which these bounds 
K-2    <-l 

are attained. 

Proof.   Since for q e S . U C .  it follows that 
  n   K-l    K-2 

Q(px) < pKQ(x) 

by simply substituting into (2.3.1) and (2.3.2) and integrating we obtain the 

bounds given. Equality is obtained when Q(x) ■ ax  for some a > 0. 

3.   THE GENERAL DERATING FUNCTION 

Let q be the unknown failure rate of the distribution from which 

we obtain our sample and let r be a known failure rate. Sometimes It 

is reasonable to assume that q has at least as strong a behavior as r 

in that the ratio q/r has some specified behavior. Because the hazard 

rate has the Intuitive interpretation of the force of mortality, it seems 

to carry a certain feeling of understanding.  The classification of ran- 

dom variables by the behavior of the ratio of their failure rate with that 

of a known function is the point of view that we adopt. 

For any positive functions f and r defined on (0,«) we say 

(3.1)   f e S  iff  (f/r) is increasing 

(3.2)   f e C  iff  (f/r) is convex increasing and lim f/r ■ 0. 
r 0+ 

In the special case where r(x) ■ x  for some K > 0, we shall 

write S  and C  respectively so as to agree with our previous notation. 

i 
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Note that by definition 

Q e C0 Iff  q Is IHR 

and also by definition 

Q c S1    Iff  q Is IHRA. 

Thus our comments show that the classifications which we Introduce 

are particular subclasses of the IHR and IHRA distributions.    We shall 

show this relationship more fully In the following remarks. 

First note that If    f e  S.,    then   f    Is said to be star shaped» 

see [4].    Now this property Is intermediate to Increasing and convex 

Increasing:     that Is,    S0 D S. D C«.    One might  think that this would 

allow us to Introduce another classification, namely 

f e I       iff    f/r e S, , r 1 

but. In fact, letting e denote the identity function, we see 

(3.3) I « S r   e'r 

since 
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- E  S.     iff   —    is increasing  iff    f  e S 

We will now derive some relationships between these classes for the 

case we consider to be of prime importance, namely, when    r    is a known 
oo 

failure rate such that  r(0) >_ 0, r(x) > 0 for x > 0 and f  r(t)dt = 

Now define 

(3.4)       R(x) = j   r(t)dt,      R^Cx) = / fr(t)dt. 
0 0 

We now have 

Remark 1. Q e  SD    iff    0R~    e  S. . 

Proof. Since    y = R    (x)    is an increasing transformation. 

^      ^ '     is increasing  in    x    iff    ^) i    is  increasing in    y. | | 

Remark 2. q e  S      iff    QR~    e CQ. 

Proof.     Let    <I) = QR    .    Now consider  the right-hand derivative 

$'  = q(R" )/r(R~ );    again set    y - R~  (x)    and    ^pr   is increasing  in    y 

iff     4'(x)    is increasing in    x    iff    *    is convex.|| 

This leaves the reader with the obvious question:    what about the 

relationship between    q e  C      and    Q e CD?    We can only say,  since 
r K 

C C I = S    that Remarks 1, 2 provide necessary conditions, 
r   r   e'r r 7 

We now state a result due to A. W. Marshall. 
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Lemma 1. For a signed measure \i    a necessary and sufficient 
CO 

condition that J   fdu  >_ 0 for all f in one of the given classes 

C , or S  is, respectively. 

(3.4.0.1)    f e C  : for all t > 0   j    (x-t)r(x)dy(x) >^ 
t 
CO 

(3.4.0.2)    f e S  : for all t > 0   J   rdp >^ 0. 

Proof. We sketch the ideas only. We first introduce the 

notation £ß(x,t)jf for the Indicator function of the relation Q, 

being one if true and zero otherwise.  Consider S.; the function of 

x ^. 0 defined by Cx .L 11 ^s ^n ^n ^or any t > 0. Hence we must 
CO oo U 

have      /   {x ^ t5dy(x)  ■     J   d\i >^0.    So the condition is necessary. 
0        " t 

On the other hand,  any    f  e  S»    can be approximated by an increasing 

sequence of linear combinations of such step functions.    By using the 

monotone convergence theorem,  the condition is sufficient, also.    To 

obtain the proof for    S      we multiply and divide under the Integral by 

r    and we apply the result just shown to    f/r e S0,    changing the 

measure appropriately.     In the same way,  linear combinations of functions 

of    x >  0   of the form    (x-t)    Cx ^ tj    for any    t > 0   are dense in 

C~,    and can be used to obtain the results quoted. | j 

We wish to discover a derating function    d    such that 
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Q[d(x)] l aj[Q(x1),...fQ(xm)]. 

For reasons of simplicity we restrict our attention to functions w 

which are linear combinations of its arguments. Hence for some real 
m 

a1 we have uiy^...^) =  2aiyi* 

We comment that the next theorem and its corollaries have 

much in comn:on with some of the results stated in [1] which are to 

be proved in a forthcoming report by the same authors. We give 

the proofs since they follow easily from the lemma of Marshall. 

THEOREM 2.   Let 0<x. <"«<x <« be arbitrary.  Let 
  1      m J 

a. = A. - A... for j«l,...,m-l, a «A  where 
j   j   j+1      J  '  *  *  m   m 

(3.4.1) 0 <^ A <^ 1 for j*l,... ,m. 

Then among all nonnegative functions d such that 

m 

(3.4.2)     Q[d(x)] < ya.Q(x,) for all q e S . 

the largest is 

(3.4.3) d(x) - R 
-1 

m 

Li-1 
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A necessary and sufficient condition on the a, that d of the form 

(3.4.3) satisfy (3.4.2) is that (3.4.1) hold. 

Proof.  We use the result of Marshall. Let u  ■ v-o be the 

difference of two positive measures. We choose v so that 

/ qdv ■ Za.Q(x.),  by taking v. as the unique measure such that the 
0 

v. measure of the interval (0,x)  is x^x < x. | and set  v = Za.v,. 

(We make the convention that a summation without limits is over the range 
00 

1    to   m.)    We also choose    a    so that      /   qdo * Q[dQc)]    by letting the 
J0 

a   measure of the  interval    (0,x)    be    x{x  < d(x)|.    Thus from Lemma 1 

we have that   (3.4.2)  holds iff    h(t) j^ 0    for all    t  > 0    where 

h(t)  =  Za1fxi  >  t|[R(xi)-R(t)]  - (t  < d(x)|[R(dx)-R(t)]. 

It is clear that we must have 

(3.5.1) 0 < d(x)  < x  . —     ^   —   m 

otherwise we would have h(t) < 0 for x < t < d(x). Now we examine m ** 

the   right-hand derivative 

h^t) = -r(t)du(t) = r(t)[ft < d(x)} - ra1{x1 > t|]. 

h^t)  = -r(t)Za1fx1 > tj, d(x) ^t < x 

h^t)  = r(t)[l -  Za^ > t|] 0 <_ t <.d(x). 

i>. ■ i i    »mmammmmmmMmsz 
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2      i-j 

Clearly, since A. = ^a.,  0 ^A <^ 1 for j=l,...,m implies for 
J  i=j 1       J 

t > 0 that 

(3.5.2)   h(t)  is increasing for t < d(x), h(t)  is decreasing for t > d(x). 

Since h(t) = 0 for t > x  we must only check that 
m 

i(0) = Za^CXj^) - R[dx] >_ 0. 

Since R   exists and is order preserving, it follows that 

d(x) <_R"1[ZaiR(xi)] . 

and  the largest value of    d is obtained at equality. 

Now if   (3.4.3)  holds we claim  (3.4.1)  is a necessary and sufficient 

condition for  (3.4.2).    That it  is sufficient we have  shown above.    To 

show necessity we realize by Lemma 1  that    (3.5.1) must follow and hence 

that 

0 <  Za.R(x.)   < R(x ) 
-      1      1    —        m 

must hold for arbitrary 0 < x. <•••< x < ».  But by proper choice of 

the x  we see it is necessary that 

m 

_1 must hold for j=l,...,m. 

1 
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We now have the 

Corollary 1.   If in the hypothesis of Theorem 2 we replace S 

by either I  or C  we merely replace the R in the conclusion 

(3.4.2) by R#. 

Proof.   Choose y, o» v exactly as before.  First consider 

q £ I . We must find the largest d such that for all t > 0 

00 

h1(t) » J  xr(x)dM(x) > 0. 

Now clearly the argument goes through exactly as before except that we 

replace    r(t)    by   tT(t)   and hence    R    by   R . 

Now consider    q e C .    We now must  find the largest    d    such that 

the function 

h2(t) - J (x-t)r(x)dy(x)  > 0        for all    t > 0. 

But we see that 

00 

h2(t) " "   / r(x>d^x) ' -hCt). 

For any given    d(x)  < x ,    we have previously seen from (3.5.2)  that    h(t) 

is unimodal with mode at    d(x)    and decreases to zero for    t > x  .    Therefore, 

since    h(0) < 0    is yet possible    h(t)    can cross zero at most once.    Thus 

hy   must also be either unimodal or monotone.    We note that also    h. 

ultimately decreases to zero and so we must assure ourselves only that 

mmm^^^s 
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m J,    .      Jh h2(0) - h^O) - S
3^ C^) " R [d(x)] 1 0. 

r 

So our best choice of d must be the one specified. 

Corollary 2.  If in the hypothesis of Theorem 2 we replace q e S 

by Q e S_, then we replace (3.4.1) by the condition:  for some 

k=l,... ,m 

(3.5.4)      0 1 Ai l***! Ak 1 i» Vu ■"*■ A " 0' and 0 "^ ^^ 

Proof.  Making the proper identification of the measures v,o as 

before, we obtain 

h3(t) = j   Rdy >^ 0 for all t ^ 0, 
t 

as a necessary and sufficient condition that 

Q(dx)   <_ EaiQ(xi)    for all    Q e  SR. 

m 

Recall A. ■ A a,  for j=l,...,m, now fix a.,...,a  so as to satisfy 
J  £n i 1     m 

(3.5.4), which is equivalent with 

a, < 0,... ,a, , < 0   a, .,■•••■ a ■ 0 
1 —      k-1 —     k+1      m 

•:■ 

where 
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0 < a. <^ 1 and 0 ij^a, <_ 1. 
k 1 l 

Integration shows 

h3(t) = zft < xi|aiR(x1) - |t < d(x)|R(dx). 

We see that we must have d(x) <_ x, ,  the index being the same as that 

above, otherwise for x. £ t < d(x) we would have h»(t) *= -RCd^) < 0. 

Clearly, for t i x. ,  h3(t) = 0,  while for dC^) £ t < x. 

h~(t) ■ l(t  < x.fa.R(x.) > 0 which is an increasing function of t. 

But since h0(t) is also increasing for 0 < t < d(x) we see that 

h.Ct) > 0 for all t > 0 iff ho(0) = Za,R(x) - R(dx) > 0 and the 

largest value of d that accomplishes this is (3.4.3). 

For the second part of the proof we assume that 

d(x) = R"1[Za,R(x,)],  h.(t) > 0 for all t > 0. 

If we let y^^ = RCx^^), s = R(t),  the above is equivalent with 

(3.5.5)  E|s < yi|aiy1 1 /s < Za1y1|Za1y1 for all s ^ 0. 

We must show that if (a.,...^ )  is such that (3.5.5) holds for all i     m 

0 f_ y, £• • •£ y < «s then for some k^l,...^ we have 

OlA^-.-A^l, Vl'-'-^m"0' 0 < Ak' 
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Since clearly we must have 0 < za.y.< y ,  by fixing y  we see 

the linear form Za.y.  attains a maximum as a function of y^^^y ■, x± 1 m-i 

on the simplex 0 < y, <•••< y . Let k < m be the least index such 

that 

m 

(3.5.6) o i Z a^y^ i y\c 
i=l 

for all (y^-.-.y _.)  in that region.  It follows immediately letting 

all y. -♦• y  in (3.5.6) and cancelling that A, >_ 0.  In the same 

manner letting y, ->■ y , yk_1 -^ 0 we see A, <^ 1. Again letting 

y. -> 0 and y.in ^ y  for i=k+l,...,m we obtain A, ,,»•••■ A =0. 

Now we pick 0 < y, <•••< y  such that 

(3.5.7) yk-1 <laiyilyk. 

From (3.5.5) consider s < ^a^y. and take y < s < y- and we obtain 

-a1y1 >^ 0 and therefore a.. <_ 0. But  ^a.y.  increases for y. 

decreasing to zero so the index k defined by (3.5.7) does not decrease 

if we take y1 = 0. Again from (3.5.5), consider s < ^a.y.  and take 

y? < s < y„. We conclude as before a2 <_ 0.  Continuing in this fashion 

we obtain a» <_ 0,...,a. , <_ 0,  from which we conclude A, ^.••'^ A, .  To 

see that a, > 0 we suppose otherwise and show that (3.5.5) is violated 

for s > 2:a.y,. | | 
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We now state the 

m 
THEOREM 3. If Q(d^c) <^ ^ a.QCx.) for some real a., and all x 

then we have a~ and Yn as sharp bounds for the assurance a and the 

confidence y» 

(3.6.1)      a > —     m 
TT d+nb.) 
J-l 3 

a0        Y > P ?VJ 
<Äni 

where    b.  ■ A./(m-j+l),    A. 

m 

' 2*ai and zi 
i-j 

are Independent exponential 

random variables with mean 1. 

Proof. By definition from (1.1) 

,-/ 
0<x,<,,,<x «» 1 m 

fml exp 
m 

-nQldjc] - £ QCXi) 
m 

TTdQK). 

By using the result   (3.4.1)  and setting    y.  ■ Q(x.) 

a i an " m*   / 
0<v,<•••<v <" Jl ym 

/ 
exp 

m 
- £(l+na )y    Hdy 

1 ' 

01/ 
ml f 

m      0<y,<»'»<y    - <» 1 ^m-1 

ra-2 

/exp - J    (l^ai)yi-(2+nAm.1)yin_1 

m-1 
TTdyr 
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Repeating this integration we finally obtain 

m! 
m 

TT(ra+l-j+nA ) 
j"l j 

which is the result claimed for a .    It follows from (1.2)   that o 

by letting    Y        = Q(X      )    be the ordered observation from the expo- 

nential distribution with mean 1.    But since 

I  i i,m *-* j       j tm j-i,m 

where Y.  =0 and 
0,m 

\ 

are independent exponentially distributed with mean 1 we have the 

result.|| 

We now derive a formula which is useful in computing the exact 

confidence bound for small values of m.  By definition of the distri- 

bution of the Z. we have 

(3.6.2) P[b1Z1 < t] - 1 - e 
-t/b. 

t > 0 



I £m   Ä 

-20- 

and by straightforward integration we find 

b -t/b b1 -t/b 
(3.6.3)       P[Wb2Z2^t]«l+ — e -b^bje        \ 

Define 

B(2)  . ^1_ B(2) .    'b2 
Bl b1.b2   •        B2 b1-b2 

Lemma 2. If    Z,,...^.     are independent exponential random 

variables with unit mean then for    b    >  0 

, k , Y   (k)  -t/b 
1 1   i i        ' j-1 J 

where we have the recursion relations holding: 

B1  = 1        and for       k > 1 

(3.6.4) ^ - B^bj/OyV J-l.-'-.k-] 

j-1 J 
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Proof.   We shall give an induction on k.  Clearly the result is 

true for k = 1,2.  Assume the assertion true for  (k-1).  Now 

qSViit 
rt/bk    .    k-1 

[ e    Zk    Vn(k-l) 

j-1 

-t/b, 
= 1 - e 

k-1 

exp    - 

t/b, 

(t-bkZk) . 
"b] Zkd2k 

j 

1 + ^B(k-l)l    e k\ b^^ 

-t/b, 

j-1 

k-1 

= 1 - e Bf"» ^_ le"^ -e"^ 
1 d    brbk 

= 1 - K^) •■■"'■(■■ | ^•■'b' 
which completes the proof. 

We also set out the special case as 

Corollary 3. Let q e S  then fix k-1 m and 0 < p < 1,  now define 

a. « p/ra     i « 1,...,k-l 

ak " (p/m)(m-k+1) 

ai-0 i ■ k+1,... ,m 

and we have 
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1 

0  <i + Sp>k 

where    H9,     is the Chi-square distribution with    2 k    degrees of freedom. 

See Reference   [1]   in this connection. 

Proof.        By the preceding result we see that 

m 

1'.- 
(p/m)(m-j+l)       j=l k 

0 j=k+l,...,m 

hence A  satisfy (3.4.3).  Now we see that 

b = p/m     j"l,..•ik 

= 0       j-k+l,...,m 

and by direct substitution into the results of Theorem 3 we have the 

result as claimed.|| 

We remark that the results of Theorem 1 are a specialization of 

Theorem 3, with a slight change of notation.  Also, we can use the nor- 
k 

mal approximation to^b Z      for k of moderate size if the b  are not 
i^i i 

too different in value. 

4.   SOME NUMERICAL COMPARISONS 

In order to appreciate the effect of the various assumptions con- 

cerning the failure rate on the derating function we shall examine 

several simple cases. 

Case I Q e S 
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We take 0 < p < 1 and set 

a1 « -p,   a2 » p   a - 0   for j ■ 3,... ,tn 

then 

A2 - p     
Ai 5S 0   for J ^ 2- 

d(x) - p(x2-x1). 

Clearly these A  satisfy (3.5.4)  and we have by (3.6.1) and (3.6.3), 

letting t = - ilnB, 

1    _ ,   -(m-Dt/p 
5   =0       1-e       r = Y. 1 +-^7 p   o 'o 

m-1 

Thus if we prescribe a  near unity, then we must choose 

Thus for example, for m = 10, n « 200 and a« * .99, we have 

from (A.l) 

1 
p " 2200 * 

We see that a high assurance for a moderate fleet size must have an 

extremely small multiplication factor. 

If we prescribe  3 and Yn»  then determine p we have 

// ON (m-IHnß 
(4.2) p^ = TTTiZ  \ 

Y0  Än(l-Y0) ' 
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If we set ß = .99 « Y0 for m = 10, then from (4.2) we 

obtain 

9(.01)   1 
P " n 100 " 51.1 * 

Thus the assurance requires a factor which is of the order — smaller n 

than the confidence does. 

Case II q e S , ^   <-l 

1 < take 0 < p < Or)  and set 

a1 = a9 = p       a. ■» 0   1 = 3 m. 

Then 

K K 
A^ = 2p ,  A- = p , A = 0   for j = 3,...,m. 

These A  satisfy (3.4.3) and 

1 

d(x) « P(x^ + xp
K. 

Now, by (3.6.1) 

(4.3) 
"o  (1 +I12p<)(l +-£VpK) m r 'v   m-1 K ' 

K K 

and using (3.6.3) with t = -£nß, b, = -f-, h0  = ■E-r, i   m    z  m-i 

£- PVJ_ iSzilt I _ 2(m-1)   I mt^ 
p<  I   m-2    n     2p< 

(4.4)    ^^.--expj-^^^^^^e.pl. 
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If we prescribe an near 1 and set p = 1 then solving 
0 ao 

(A.3) for p  yields 

(4.5) P = Ä K _ -3m+2 +  /(9+8p)m -(12+8P) + 4 
4n 

If we expand the right-hand side of (4.5) in a Maclaurin's series in 

p and retain only the first two terms, we have the approximation 

(4.6) m(in-l)p 
n(3ni-2) 

For    n = 200,  m «= 10, a0 =  .99    we have from (4.6) 

P * 560(11) 

r s.s if    K » 4 

1 
K   = • 

i 
4.3 if    < - 6 

1 
.    3 if    < « 8. 

The reciprocal of    p    is sometimes called the saatter factor* and is 

usually taken between 2 and 4.    Here we can see how strong an assumption 

is necessary to justify scatter factors of such magnitude. 

If we prescribe    Yn    near    1,     then from (4.4) we have 

£n 
(m-2)(l-Y0) 

2(m-l) 
mt 

2p 
+ An 1 - m 

2(^lTexP 
_  (3m-2)t 

2p 
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and by neglecting the second term on the right-hand side of the 

equation we have the approximation 

(4.7) 

2 Jin 

mJlnB 
rm-2)(1-Y0) 

2m-2 

For m = 10, Yn ~ «99 and  ß near 1  we have 

P = 

ß  so that if we set  ß = .99, 

, 1 
1-ß 

1.083 

P= , 

3.2 

1 
2.2 

if  < = 4 

if  K = 6 

but if we set  ß = .999 

P " ' 
5.7 

1 
3.2 

if  K = 4 

if K - 6 



.;-'< 

-27- 

BIBLIOGRAPHY 

[1] Barlow, Richard E., and Proschan, Frank, "Tolerance and Confidence 

Limits for Classes of Distributions Based on Failure Rate," Boeing 

document Dl-82-0503, 1966. 

[2] Barlow, Richard E., and Proschan, Frank, Mathematical Theory of 

Reliability. J. Wiley and Sons, New York, 1965. 

[3] Birnbaum, Z. W., Esary, J. D., and Marshall, A. W., "Stochastic 

Characterization of Wear-out for Components and Systems," Boeing 

document Dl-82-0460, 1965. 

[A] Bruckner, A. M., and Ostrow, E., "Some Function Classes Related 

to the Class of Convex Functions," Paaifio J. Math.,  12, 

1203-1215, 1962. 

[5] Freudenthal, A. M., and Heller, R. A., "On Stress Interaction in 

Fatigue and a Cumulative Damage Rule," J. Aero.  Sai.s  26,  431-442, 

1959. 

[6] Freudenthal, A. M., "Prediction of Fatigue Life," Journal of 

Applied Physios,  31,  2196-2198, 1960. 

[7] Weibull, W., Fatigue Testing and the Analysis of Results. Pergamon 

Press, 1961. 


